Activation of membrane receptors by neurotransmitter released from temperature-sensitive hydrogels.

نویسندگان

  • Niraj J Muni
  • Haohua Qian
  • Nasser M Qtaishat
  • Richard A Gemeinhart
  • David R Pepperberg
چکیده

The present paper describes the design, construction and testing of a temperature-sensitive N-isopropylacrylamide hydrogel device for studying the controlled presentation of gamma-aminobutyric acid (GABA) to GABA(C) membrane receptors expressed in Xenopus laevis oocytes. Upon temperature lowering, the GABA-loaded hydrogel positioned near the surface of the GABA(C)-expressing oocyte elicits a membrane current response resembling that induced by superfusion of the oocyte with free GABA. The response to cooling is not observed when GABA is omitted from the hydrogel loading solution. In addition, picrotoxin, a known GABA(C) receptor antagonist, inhibits the oocyte membrane current response associated with temperature lowering of GABA-loaded hydrogels. The data indicate that the present system affords a temperature-regulated release of GABA from the hydrogel and a resulting activation of the expressed GABA(C) receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

Synthesis of pH Sensitive Hydrogels Based on Poly Vinyl Alcohol and Poly Acrylic Acid

     In this research, hydrogels based on poly vinyl alcohol and poly acrylic acid blend were prepared which were cross-linked by applied thermal conditions. Afterward, effects of time and heating on water uptake were investigated. The highest water uptake value exhibited by the sample that was heated for 20 min. at 110 ºC was about 2129% after 4 days at equilibrium state. Hydrogels exhibited p...

متن کامل

GABAA Receptors: Post-Synaptic Co-Localization and Cross-Talk with Other Receptors

γ-Aminobutyric acid type A receptors (GABA(A)Rs) are the major inhibitory neurotransmitter receptors in the central nervous system, and importantly contribute to the functional regulation of the nervous system. Several studies in the last few decades have convincingly shown that GABA can be co-localized with other neurotransmitters in the same synapse, and can be co-released with these neurotra...

متن کامل

The Action Potential, Synaptic Transmission, and Maintenance of Nerve Function

1. Nongated ion channels establish the resting membrane potential of neurons; voltage-gated ion channels are responsible for the action potential and the release of neurotransmitter. 2. Ligand-gated ion channels cause membrane depolarization or hyperpolarization in response to neurotransmitter. 3. Nongated ion channels are distributed throughout the neuronal membrane; voltage-gated channels are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 151 2  شماره 

صفحات  -

تاریخ انتشار 2006